Unstructured Mesh Motion Using Sliding Cells and Mapping Domains

نویسندگان

  • Sina Arabi
  • François Guibault
چکیده

This paper addresses the problem of generating unstructured meshes with fixed connectivity for large rigid body motion. The proposed approach consists in generating a mesh in computational space for a generic configuration of the moving body. The management of body and mesh motion is then carried out in computational space using a sliding mesh paradigm. Afterwards, the mesh in physical space is obtained through the Winslow equation to map the computational mesh to the physical space. Two new discritization techniques are implemented, validated and compared for performing the Winslow operator on unstructured grids. The first approach used a 9-point Cartesian stencil inside each patch of the computational mesh and discritizes the mapping operators on that using conventional finite difference schemes. The second approach used finite volume discritization technique by linearizing the system of mapping equations. This methodology is applied to complex geometric configurations representative of engineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Domain Analysis of the Ventilation around the Partial Immersed Propeller Using Sliding Mesh Method

In this paper a computational method is presented for predicting the unsteady hydrodynamic forces acting on partial immersed propeller (SPP). In order to simulate the unsteady viscous flow around a SPP, a Reynolds-Averaged Navier–Stokes (RANS) solver is used. The time-accurate calculations are made by applying the sliding mesh method. Structured and unstructured mesh techniques are used. ...

متن کامل

Nonlinear Elasticity for Mesh Deformation with High-Order Discontinuous Galerkin Methods for the Navier-Stokes Equations on Deforming Domains

We present a numerical framework for simulation of the compressible Navier-Stokes equations on problems with deforming domains where the boundary motion is prescribed by moving meshes. Our goal is a high-order accurate, efficient, robust, and general purpose simulation tool. To obtain this, we use a discontinuous Galerkin space discretization, diagonally implicit Runge-Kutta time integrators, a...

متن کامل

Automatic Mesh Motion for the Unstructured Finite Volume Method

Moving-mesh unstructured Finite Volume Method (FVM) is a good candidate for tackling flow simulations where the shape of the domain changes during the simulation or represents a part of the solution. For efficient and user-friendly approach to the problem, it is necessary to automatically determine the point positions in the mesh, based on the prescribed boundary motion. In this paper, we prese...

متن کامل

Numerical Investigation of Island Effects on Depth Averaged Fluctuating Flow in the Persian Gulf

In the present paper simulation of tidal currents on three-dimensional geometry of the Persian Gulf is performed by the solution of the depth averaged hydrodynamics equations. The numerical solution was applied on two types of discritized simulation domain (Persian Gulf); with and without major islands. The hydrodynamic model utilized in this work is formed by equations of continuity and motion...

متن کامل

Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique

Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012